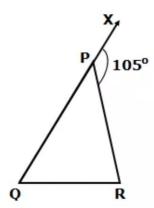
Chapter 11. Triangles and Their Congruency

Ex 11.1

Answer 1.



```
\angle Q : \angle R = 1 : 2

Let \angle Q = x^{\circ}

\Rightarrow \angle R = 2x^{\circ}

Now, \angle RPX = \angle Q + \angle R ....[Exterior angle property]

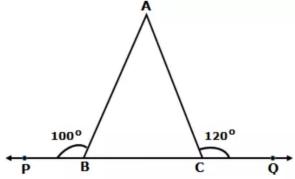
\Rightarrow 105^{\circ} = x^{\circ} + 2x^{\circ}

\Rightarrow 105^{\circ} = 3x^{\circ}

\Rightarrow x^{\circ} = 35^{\circ}

\Rightarrow \angle Q = x^{\circ} = 35^{\circ} and \angle R = 2x^{\circ} = 70^{\circ}
```

Answer 2.



```
\angleABP + \angleABC = 180° ....(Linear pair)

\Rightarrow 100° + \angleABC = 180° \Rightarrow \angleABC = 180° - 100° = 80°

\angleACQ + \angleACB = 180° ....(Linear pair)

\Rightarrow 120° + \angleACB = 180° \Rightarrow \angleACB = 180° - 120° = 60°

Now, in \triangleABC,

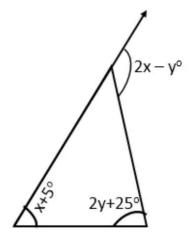
\angleA + \angleB + \angleC = 180° ....(Angle sum property of a triangle)

\Rightarrow \angleA + 80° + 60° = 180°

\Rightarrow \angleA = 180° - 80° - 60° = 40°
```

Hence, the angles of a triangle are 40°, 60° and 80°.

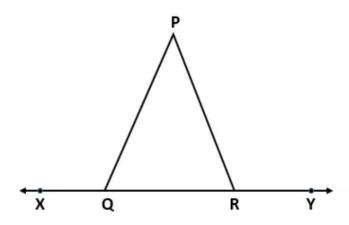
Answer 3.



$$(2x - y)^{9} = (x + 5)^{9} + (2y + 25)^{9}$$
(Exterior angle property)
 $\Rightarrow 2x^{9} - y^{9} = x^{9} + 5^{9} + 2y^{9} + 25^{9}$
 $\Rightarrow 2x^{9} - x^{9} = 2y^{9} + y^{9} + 30^{9}$
 $\Rightarrow x^{9} = 3y^{9} + 30^{9}$

When
$$y = 15^\circ$$
, we have $x^\circ = 3 \times 15^\circ + 30^\circ = 45^\circ + 30^\circ = 75^\circ$

Answer 4.



In
$$\triangle PQR$$
, $\angle P + \angle Q = 130^{\circ}$ (given)
Now, $\angle P + \angle Q = \angle PRY$ (Exterior angle property)
 $\Rightarrow \angle PRY = 130^{\circ}$
 $\angle PRY + \angle R = 180^{\circ}$ (Linear pair)
 $\Rightarrow 130^{\circ} + \angle R = 180^{\circ}$
 $\Rightarrow \angle R = 180^{\circ} - 130^{\circ} = 50^{\circ}$

Also,
$$\angle P + \angle R = 120^\circ$$
(given)
Now, $\angle P + \angle R = \angle PQX$ (Exterior angle property)
 $\Rightarrow \angle PQX = 120^\circ$
 $\angle PQX + \angle Q = 180^\circ$ (Linear pair)
 $\Rightarrow 120^\circ + \angle Q = 180^\circ$
 $\Rightarrow \angle Q = 180^\circ - 120^\circ = 60^\circ$
In $\triangle PQR$,
 $\angle P + \angle Q + \angle R = 180^\circ$ (Angle sum property of a triangle)
 $\Rightarrow \angle P + 60^\circ + 50^\circ = 180^\circ$
 $\Rightarrow \angle P = 180^\circ - 110^\circ = 70^\circ$
Thus, the angles of $\triangle PQR$ are as follws:
 $\angle P = 70^\circ$, $\angle Q = 60^\circ$ and $\angle R = 50^\circ$

Answer 5.

For any triangle, sum of measures of all three angles = 180°

Thus, we have

$$(x + 10)^{\circ} + (x + 30)^{\circ} + (x - 10)^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 x° + 10° + x° + 30° + x° - 10° = 180°

$$\Rightarrow$$
 x = 50

Now,

$$(x + 10)^\circ = (50 + 10)^\circ = 60^\circ$$

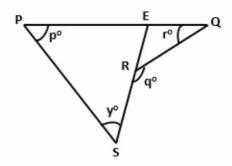
$$(x + 30)^{\circ} = (50 + 30)^{\circ} = 80^{\circ}$$

$$(x-10)^{\circ} = (50-10)^{\circ} = 40^{\circ}$$

Thus, the angles of a triangle are 60°, 80° and 40°.

Answer 6.

SR is produced to meet PQ at E.



In
$$\triangle PSE$$
, $\angle P + \angle S + \angle PES = 180^{\circ}$ (Angle sum property of a triangle) $\Rightarrow p^{\circ} + y^{\circ} + \angle PES = 180^{\circ}$ $\Rightarrow \angle PES = 180^{\circ} - p^{\circ} - y^{\circ}$ (i)

In $\triangle RQE$, $\angle R + \angle Q + \angle REQ = 180^{\circ}$ (Angle sum property of a triangle) $\Rightarrow (180^{\circ} - q^{\circ}) + r^{\circ} + \angle REQ = 180^{\circ}$ $\Rightarrow \angle REQ = 180^{\circ} - (180^{\circ} - q^{\circ}) - r^{\circ}$ $\Rightarrow \angle REQ = q^{\circ} - r^{\circ}$ (ii)

Now, $\angle PES + \angle REQ = 180^{\circ}$ (Linear pair) $\Rightarrow (180^{\circ} - p^{\circ} - y^{\circ}) + (q^{\circ} - r^{\circ}) = 180^{\circ}$ [From (i) and (ii)] $\Rightarrow -p^{\circ} - y^{\circ} + q^{\circ} - r^{\circ} = 0$ $\Rightarrow -y^{\circ} = -q^{\circ} + p^{\circ} + r^{\circ}$ $\Rightarrow y^{\circ} = q^{\circ} - p^{\circ} - r^{\circ}$

Answer 7.

In
$$\triangle PQR$$
,
$$\angle P + \angle Q + \angle R = 180^{\circ} \quad (angle sum property)$$

$$\Rightarrow 4x^{\circ} + 5x^{\circ} + 9x^{\circ} = 180^{\circ}$$

$$\Rightarrow 18x^{\circ} = 180^{\circ}$$

$$\Rightarrow x = 10$$

$$\Rightarrow \angle P = 4x^{\circ} = 4x \cdot 10^{\circ} = 40^{\circ}$$

$$\angle Q = 5x^{\circ} = 5x \cdot 10^{\circ} = 50^{\circ}$$

$$\angle QPR = \angle PRS \quad (Alternate angles)$$

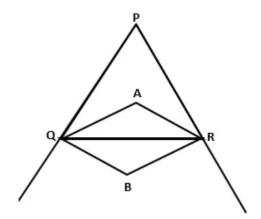
$$And, \angle QPR = 40^{\circ}$$

$$\Rightarrow \angle PRS = 40^{\circ}$$
By exterior angle property,
$$\angle PQR + \angle QPR = \angle PRS + y^{\circ}$$

$$\Rightarrow 40^{\circ} + 50^{\circ} = 40^{\circ} + y^{\circ}$$

$$\Rightarrow y = 50^{\circ}$$

Answer 8.



By exterior angle property,

$$\angle RQS = \angle P + \angle R$$
 and $\angle QRT = \angle P + \angle Q$

Since QB bi sects ∠RQS,

$$\angle BQR = \frac{1}{2} \angle RQS = \frac{1}{2} (\angle P + \angle R)$$

Also RB bi sects ∠QRT,

$$\angle BRQ = \frac{1}{2} \angle QRT = \frac{1}{2} (\angle P + \angle Q)$$

In ΔQBR,

$$\angle$$
QBR + \angle BRQ + \angle BQR = 180°

$$\Rightarrow \angle QBR + \frac{1}{2}(\angle P + \angle Q) + \frac{1}{2}(\angle P + \angle R) = 180^{\circ}$$

$$\Rightarrow \angle QBR + \frac{1}{2}(\angle P + \angle Q + \angle P + \angle R) = 180^{\circ}$$

$$\Rightarrow \angle QBR + \frac{1}{2}(\angle P + 180^{\circ}) = 180^{\circ}$$
 $[\angle P + \angle Q + \angle R = 180^{\circ}]$

$$\Rightarrow$$
 2 \angle QBR + \angle P + 180° = 360°

$$\Rightarrow$$
 2\times QBR = 180° - \times P \qquad \ldots (i)

Sin œ QB bi sects ∠PQR,

$$\angle AQR = \frac{1}{2} \angle PQR$$

Also RA bi sects ∠PRQ,

$$\angle QRA = \frac{1}{2} \angle PRQ$$

In ∆AQR,

$$\angle$$
AQR + \angle QRA + \angle QAR = 180°

$$\Rightarrow \frac{1}{2} \angle PQR + \frac{1}{2} \angle PRQ + \angle QAR = 180^{\circ}$$

$$\Rightarrow \frac{1}{2}(\angle PQR + \angle PRQ) + \angle QAR = 180^{\circ}$$

$$\Rightarrow$$
 \angle PQR + \angle PRQ + $2\angle$ QAR = 360°

$$\Rightarrow$$
 2 \angle QAR = 360° - \angle PQR - \angle PRQ

$$\Rightarrow$$
 2 \angle QAR = 180° + (180° - \angle PQR - \angle PRQ)

$$\Rightarrow$$
 2 \angle QAR = 180° + \angle P(ii)

Adding (i) and (ii),

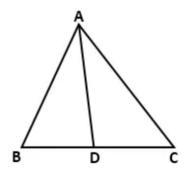
$$\Rightarrow 2\angle QAR + 2\angle QBR = 180^{\circ} + \angle P + 180^{\circ} - \angle P$$

 $\Rightarrow 2\angle QAR + 2\angle QBR = 360^{\circ}$
 $\Rightarrow \angle QAR + \angle QBR = 180^{\circ}$

Answer 9.

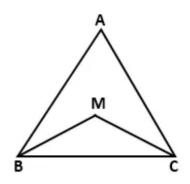
By exterior angle property, $\angle p = \angle PQR + \angle PRQ$ $\angle q = \angle QPR + \angle PRQ$ $\angle r = \angle PQR + \angle QPR$ $Now, \angle p + \angle q + \angle r = \angle PQR + \angle PRQ + \angle QPR + \angle PRQ + \angle PQR + \angle QPR$ $\Rightarrow \angle p + \angle q + \angle r = 2\angle PQR + \angle 2PRQ + 2\angle QPR$ $\Rightarrow \angle p + \angle q + \angle r = 2\angle PQR + \angle PRQ + \angle QPR)$ $\Rightarrow \angle p + \angle q + \angle r = 2 \times 180^{\circ}$ [Angle sum property: $\angle PQR + \angle PRQ + \angle QPR = 180^{\circ}$] $\Rightarrow \angle p + \angle q + \angle r = 360^{\circ}$

Answer 10.



Given, \angle CAD = \angle B(i) By exterior angle property, \angle ADB = \angle CAD + \angle C Also, \angle ADC = \angle BAD + \angle B \Rightarrow \angle ADC = \angle BAD + \angle CAD[From (i)] \Rightarrow \angle ADC = \angle BAC

Answer 11.



Sinec BM and CM are bisectors of \angle ABC and \angle ACB,

$$\angle B = 2\angle OBC$$
 and $\angle C = 2\angle OCB$ (i)

In ∆ABC,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 \angle A + 2 \angle OBC + 2 \angle OCB = 180°[From (i)]

$$\Rightarrow \frac{\angle A}{2} + \angle OBC + \angle OCB = 90^{\circ} \qquad \dots [Dividing both sides by 2]$$

⇒
$$\angle$$
OBC + \angle OCB = 90° - $\frac{\angle A}{2}$ (ii)

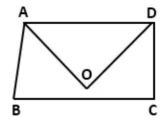
Now, in ABMC,

$$\Rightarrow$$
 90° - $\frac{\angle A}{2}$ + $\angle BMC = 180°$ [From (ii)]

$$\Rightarrow \angle BMC = 180^{\circ} - 90^{\circ} + \frac{\angle A}{2}$$

$$\Rightarrow \angle BMC = 90^{\circ} + \frac{\angle A}{2}$$

Answer 12.



Since AO and DO are bisectors of $\angle A$ and $\angle D$ of quadrilateral ABCD, $\angle A = 2\angle OAD$ and $\angle D = 2\angle ODA$ (i)

In ∆AOD,

$$\angle$$
OAD + \angle ODA + \angle AOD = 180°

$$\Rightarrow$$
 2 \angle OAD + 2 \angle ODA + 2 \angle AOD = 360° [Multiplying both sides by 2]

$$\Rightarrow$$
 2 \angle OAD + 2 \angle ODA = 360° - 2 \angle AOD(ii)

In quadriateral ABCD,

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow$$
 2 \angle OAD + \angle B + \angle C + 2 \angle ODA = 360°[From (i)]

$$\Rightarrow$$
 \angle B + \angle C = 360° - 2 \angle OAD - 2 \angle ODA

$$\Rightarrow$$
 \angle B + \angle C = 360° - (2 \angle OAD + 2 \angle ODA)

$$\Rightarrow$$
 \angle B + \angle C = 360° - (360° - 2 \angle AOD)[From (ii)]

$$\Rightarrow \angle B + \angle C = 2\angle AOD$$

Answer 13.

Consider AABC.

Now,
$$\angle A < \angle B + \angle C$$

$$\Rightarrow \angle A + \angle A < \angle A + \angle B + \angle C$$

$$\Rightarrow \angle A < \frac{180^{\circ}}{2}$$

Similarly, we have

Hence, the triangle is acute-angled.

Answer 14.

Let the angles of a triangle be 2x, 4x and 6x.

Then, we have

$$2x + 4x + 6x = 180^{\circ}$$

$$\Rightarrow x = 15^{\circ}$$

$$\Rightarrow$$
 2x = 2 x 15° = 30°

$$4x = 4 \times 15^{\circ} = 60^{\circ}$$

$$6x = 6 \times 15^{\circ} = 90^{\circ}$$

Since one angle is 90°, the triangle is a right-angled triangle.

Answer 15.

Let ABC be a triangle such that

$$\angle A + \angle B = 139^{\circ}$$
(i)

and,
$$\angle A - \angle B = 5^{\circ}$$
(ii)

Adding (i) and (ii), we get

$$2\angle A = 144^{\circ}$$

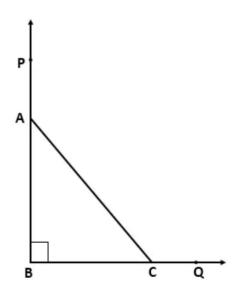
$$\Rightarrow \angle A = 72^{\circ}$$

From (i), we have

Now,
$$3^{rd}$$
 angle = $180^{\circ} - (\angle A + \angle B) = 180^{\circ} - 139^{\circ} = 41^{\circ}$

Thus, the angles of a triangle are 72°, 67° and 41°.

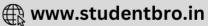
Answer 16.



And,
$$\angle$$
ABC + \angle BAC + \angle ACB = 180°

$$\Rightarrow$$
 \angle BAC + \angle ACB = 180° - 90°

$$\Rightarrow \angle BAC + \angle ACB = 90^{\circ}$$
(i)



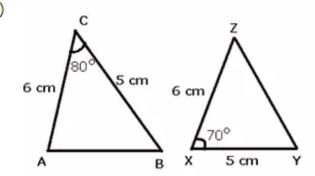
By exterior angle property, $\angle PAC = \angle ABC + \angle ACB \dots$ (ii) $\angle QCA = \angle ABC + \angle BAC \dots$ (iii)

Adding (ii) and (iii), we get $\angle PAC + \angle QCA = \angle ABC + \angle ACB + \angle ABC + \angle BAC$ $\Rightarrow \angle PAC + \angle QCA = (\angle ACB + \angle BAC) + 2\angle ABC$ $\Rightarrow \angle PAC + \angle QCA = 90^{\circ} + 2 \times 90^{\circ} \dots$ [From (i)] $\Rightarrow \angle PAC + \angle QCA = 90^{\circ} + 180^{\circ}$ $\Rightarrow \angle PAC + \angle QCA = 270^{\circ}$

Ex 11.2

Answer 1.

(i)



In AABC and AXYZ

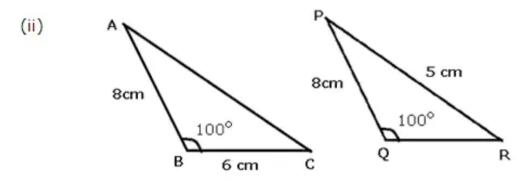
AC = XZ

BC = XY

The included angle \angle C=80° is not equal to \angle X i.e. 70°.

Now, for $\triangle ABC$ to be congruent to $\triangle XYZ$, AB should be equal to XY and YZ should be equal to BC. Then, $\angle A = \angle C$ and $\angle X = \angle Z$. So, the measure of $\angle B$ will not be equal to $\angle Y$.

Therefore, $\triangle ABC$ cannot be congruent to $\triangle XYZ$.



In ΔABC and ΔPQR

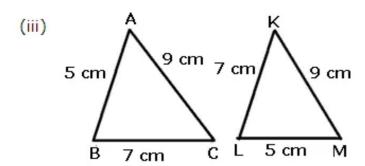
$$AB = PQ$$

$$\angle B = \angle Q =$$

BC can be equal to QR or AC can be equal to RP

Therefore,

 ΔABC can be congruent to ΔPQR .



In ΔABC and ΔKLM

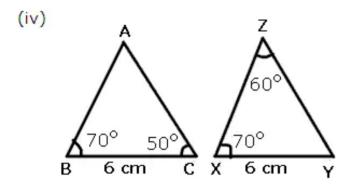
AB = LM

BC = KL

AC = KM

Therefore,

ΔABC ≅ ΔKLM (SSS criteria)



In ΔABC and ΔXYZ

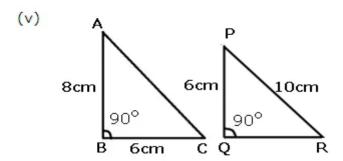
$$\angle B = \angle X$$

$$\angle Y = 180^{\circ} - (70^{\circ} + 60^{\circ}) = 50^{\circ}$$

$$\angle C = \angle Y$$

Therefore,

ΔABC ≅ ΔXYZ (ASA criteria)



In △ABC and △PQR

$$\angle B = \angle Q$$

$$BC = PQ$$

By Pythagoras theorem,

$$PR^2 = PQ^2 + QR^2$$

$$10^2 = 6^2 + QR^2$$

$$100 = 36 + QR^2$$

$$QR = \sqrt{100 - 36}$$

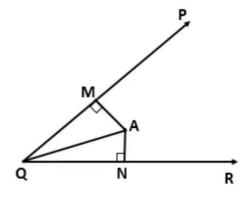
$$QR = \sqrt{64} = 8cm$$

$$AB = QR$$

Therefore,

ΔABC ≅ ΔPQR (SAS and RHS criteria)

Answer 2.



Given,

AM L PQ and AN L QR

AM= AN

In AAQM and AQN,

AM = AN(given)

AQ = AQ(common)

 $\angle AMQ = \angle ANQ$ (Each = 90°)

So, by RHS congruence, we have

ΔAQM ≅ ΔAQN

 \Rightarrow \angle AQM = \angle AQN(φ ct)

⇒ ∠AQP = ∠AQR

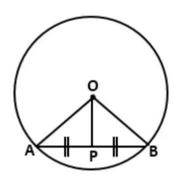
Answer 3.

Given:

In the figure, O is centre of the circle and AB is chord.

P is the mid-point of AB \Rightarrow AP = PB

To prove: OP ⊥ AB



Construction: Join OA and OB

Proof:

In ΔOAP and ΔOBP

OA = OB[radii of the same circle]

OP = OP[common]

AP = PB[given]

: By Side-Side-Side criterion of congruency,

ΔΟΑΡ ≅ ΔΟΒΡ

The corresponding parts of the congruent triangles are congruent.

: ZOPA=ZOPB

But $\angle OPA + \angle OPB = 180^{\circ}$ [linear pair]

:. ZOPA = ZOPB = 90°

Hence OP ⊥ AB.

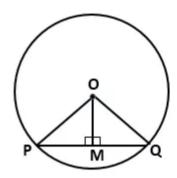
Answer 4.

Given:

In the figure, O is centre of the airde and PQ is a chord.

OM ± PQ

To prove: PM = QM



Construction: Join OP and OQ

Proof:

In right triangles ΔΟΡΜ and ΔΟQΜ,

OP = OQ[radii of the same dirdle]

 $OM = OM \dots [common]$

:. By Right angle-Hypotenuse-Side criterion of congruency,

 $\triangle OPM \cong \triangle OQM$

The corresponding parts of the congruent triangles are congruent.

 $\therefore PM = QM$

Answer 5.

In ΔABC and ΔPQR and

AB = PQ

BC = QR

 $\angle ABX + \angle ABC = \angle PQY + \angle PQR = 180^{\circ}$

 $\angle ABX = \angle PQY$

 $\Rightarrow \angle ABC = \angle PQR$

Therefore,

ΔABC ≅ ΔPQR (SAS criteria)

Answer 6.

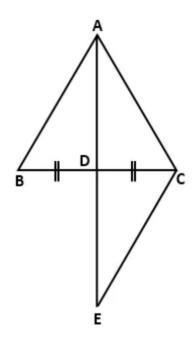
Given:

D is mid-point of BC \Rightarrow BD = DC

DE = AD

To prove:

- a. ∆ABD ≅ ∆ECD
- b. AB = EC
- c. AB || EC



a. In \triangle ABD and \triangle ECD, BD = DC(given)

$$\angle$$
ADB = \angle CDE(vertically opposite angles)

AD = DE(given)

: By Side-Angle-Side criterion of congruence,

ΔABD ≅ ΔECD

b. The corresponding parts of the congruent triangles are congruent.

∴ AB = EC

a Also, $\angle DAB = \angle DEC$ (ap.a.t)

∴ AB || EC(∠DAB and ∠DEC are alternate angles)

Answer 7.

Answer 8.

In
$$\triangle$$
GCB and \triangle DCE and \angle 1+ \angle GBC = \angle 2+ \angle DEC = 180° \angle 1= \angle 2 = \Rightarrow \angle GBC= \angle DEC BC = CE \angle GCB= \angle DCE = (vertically opposite angles) Therefore, \triangle GCB \cong \triangle DCE (ASA criteria)

Answer 9.

```
In AABC,
Since AB = AC
∠C=∠B (angles opposite to the equal sides are equal)
BO and CO are angle bisectors of \angleB and \angleC respectively
Hence, \angle ABO = \angle OBC = \angle BCO = \angle ACO
Join AO to meet BC at D
In A ABO and A ACO and
AO = AO
AB = AC
 \angle C = \angle B =
 Therefore, △ ABO ≅ △ ACO (SAS criteria)
   Hence, ∠ BAO=∠CAO
  ⇒AO bisects angle BAC
  In △ ABO and △ ACO
  and AB = AC
  AO = AO
\angle BAD = \angle CAD = (proved)
```

Answer 10.

Therefore, BO = CO

In \triangle ABD and \triangle FEC AB = FE BD = CE (BC = DE; CD is common) \angle B = \angle E \triangle ABD \cong \triangle FEC (SAS criteria)

ΔABO ≅ ΔACO (SAS criteria)

Answer 11.

```
In \triangle BMR and \triangle DNR BM = DN \angle BMR=\angle DNR=90° \angle BRM=\angle DRN = (vertically opposite angles) Hence, \angle MBR=\angle NDR (sum of angles of a triangle = 180°) \triangle BMR \cong \triangle DNR (ASA criteria) Therefore, BR = DR So, AC bisects BD.
```

Answer 12.

```
In △QLM and △RNM
   QM = MR
   LM = MN
   \angle QLM = \angle RNM = 90^{\circ}
 Therefore, △QLM ≅ △RNM (RHS criteria)
 Hence, QL = RN \dots (i)
 Join PM
 In APLM and APNM and
   PM = PM
               (common)
   LM = MN
 ∠PLM=∠PNM= 90°
 Therefore, △PLM ≅ △PNM (RHS criteria)
 Hence, PL = PN \dots (ii)
 From (i) and (ii)
 PQ = PR
```


Answer 13.

```
\angle 1 = 2\angle 2 and \angle 4 = 2\angle 3

1 = 22 and 4 = 23\angle 1 = \angle 4 (vertically opposite angles)

\Rightarrow 2\angle 2 = 2\angle 3 or \angle 2 = \angle 3 ......(i)

\angle R = \angle S = \text{(since RT = TS and angle opposite to equal sides are equal)}

\Rightarrow \angle TRB = \angle TSA = ..........(ii)

In \triangle RBT \text{ and } \triangle SAT.

RT = TS

\angle TRB = \angle TSA

\angle RTB = \angle STA = \text{(common)}

Therefore, \triangle RBT \cong \triangle SAT. (ASA criteria)
```

Answer 14.

In
$$\triangle$$
 CAD and \triangle CBE

CA = CB (Isosceles triangle)

 \angle CDA= \angle CEB = 90°

 \angle ACD= \angle BCE = (common)

Therefore, \triangle CAD \cong \triangle CBE (AAS criteria)

Hence, CE = CD

But, CA = CB

 \Rightarrow AE + CE = BD + CD

 \Rightarrow AE = BD

Answer 15.

In AABC

AB = AC

AX = AY

 \Rightarrow BX = CY

In ΔBXC and ΔCYB

BX = CY

BC = BC

 $\angle B = \angle C = C$ (AB = AC and angles opposite to equal sides are equal)

Therefore, $\triangle BXC \cong \triangle CYB$ (SAS criteria)

Hence, CX = BY

Answer 16.

Given:

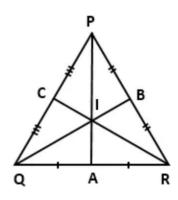
In ΔPQR,

PA is the perpendicular bisector of QR \Rightarrow QA = RA

RC is the perpendicular bisector of PQ \Rightarrow PC = QC

QB is the perpendicular bisector of PR \Rightarrow PB = RB

PA, RC and QB meet at I.



To prove: IP = IQ = IR

Proof:

In ΔQIA and ΔRIA

QA = RA [Given]

 $\angle QAI = \angle RAI \quad [Each = 90^{\circ}]$

IA = IA[Common]

 ${\it ::}$ By Side-Angle-Side criterion of congruence,

 $\Delta QIA \cong \Delta RIA$

The corresponding parts of the congruent triangles are congruent.

$$\therefore IQ = IR \qquad(i)$$

Similarly, in ΔRIB and ΔΡΙΒ

$$\angle RBI = \angle PBI \dots [Each = 90^{\circ}]$$

: By Side-Angle-Side criterion of congruence,

The corresponding parts of the congruent triangles are congruent.

$$\therefore$$
 IR = IP \dots (ii)

$$IP = IQ = IR$$

Answer 17.

In ΔADE and ΔBAC

$$AE = AC$$

$$AB = AD$$

$$\angle BAD = \angle EAC$$

$$\angle DAC = \angle DAC = DAC (common)$$

$$\Rightarrow \angle BAC = \angle EAD = EAD$$

Therefore, △ADE≅ △BAC (SAS criteria)

Hence,
$$BC = DE$$

Answer 18.

Given:

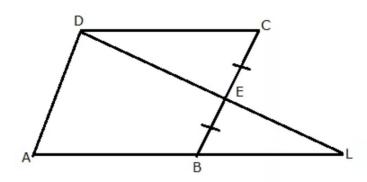
ABCD is a parallelogram, where BE = CE

To prove:

a. $\triangle DCE \cong \triangle LBE$

b. AB = BL

 $CDC = \frac{AL}{2}$



a. In ΔDCE and ΔLBE

∠DCE = ∠EBL[DC || AB, alternate angles]

CE = BE[given]

∠DEC = ∠LEB[vertically opposite angles]

:. By Angle-Side-Angle criterion of congruence,

ΔDCE ≅ ΔLBE

The corresponding parts of the congruent triangles are congruent.

 \therefore DC = LB(1)

b. DC = AB(2)[opposite sides of a parallelogram]

From (1) and (2),

 $AB = BL \qquad \dots (3)$

c. AL = AB + BL

 \Rightarrow AL = AB + AB[From (3)]

 \Rightarrow AL = 2AB

 \Rightarrow AL = 2DC[From (2)]

Answer 19.

$$\angle$$
BCD= \angle ADC

 \angle ACB= \angle BDA

 \angle BCD+ \angle ACB= \angle ADC+ \angle BDA

 \Rightarrow \angle ACD= \angle BDCACD=BDC

In \triangle ACD and \triangle BCD

 \angle ACD= \angle BDCACD=BDC

 \angle ACD= \angle BDCACD=BDC

 \angle ADC= \angle BCD

ADC= \angle BCD

Therefore, \triangle ACD= \cong \triangle BCD (ASA criteria)

Hence, AD = BC and \angle A= \angle B.

Answer 20.

Since AP and BQ are perpendiculars to the line segment AB, therefore AP and BQ are parallel to each other.

In \triangle AOP and \triangle BOQ \angle PAO = \angle QBO = 90° \angle APO = \angle BQO (alternate angles) AP = BQ Therefore, \triangle AOP \cong \triangle BOQ AOP BOQ (ASA criteria) Hence, AO = OB and PO = OQ Thus, O is the mid-point of line segments AB and PQ.

Answer 21.

```
CE is median to AB

⇒ AE = BE ......(i)

BD is median to AC

⇒ AD = DC ......(ii)

But AB = AC.....(iii)

Therefore from (i), (ii) and (iii)

BE = CD

In ΔBEC and ΔBDC

BE = CD

∠EBC = ∠DCB (angles opposite to equal sides are equal)

BC = BC (common)

Therefore, ΔBEC≅ ΔBDC (SAS criteria)

Hence, BD = CE
```

Answer 23.

In
$$\triangle$$
 ABC and \triangle PQR
BC = QR

AD and PM are medians of BC and QR respectively

$$\Rightarrow BD = DC = QM = MR$$
In \triangle ABD and \triangle PQM

$$AB = PQ$$

$$AD = PM$$

$$BD = QM$$
Therefore, \triangle ABD \cong \triangle PQMABD PQM (SSS criteria)

Hence, \angle B = \angle Q

Now in \triangle ABC and \triangle PQR

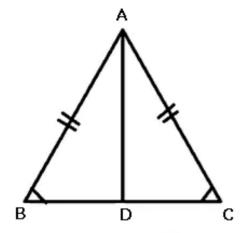
$$AB = PQ$$

$$BC = QR$$

$$\angle$$
 B = \angle Q

Therefore, \triangle ABC \cong \triangle PQRABC PQR (SAS criteria)

Answer 24.



Now in △ABD and △ADC

AB = AC

AD = AD

 $\angle B = \angle C$

Therefore, △ ABD ≅ △ ADC (SSA criteria)

Hence, BD = DC

Thus, AD bisects BC

Answer 25.

Since AB = AC

 $\angle ABC = \angle ACB$

 $But \angle DBC = \angle DCB$

 $\Rightarrow \angle ABD = \angle ACD$

Now in AABD and AADC

AB = AC

AD = AD

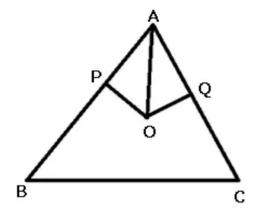
 $\angle ABD = \angle ACD$

Therefore, $\triangle ABD \cong \triangle ADC$ (SSA criteria)

Hence, $\angle BAD = \angle CAD$

Thus, AD bisects ∠ BAC

Answer 26.



In △POA and △QOA

$$\angle OPA = \angle OQA = 90^{\circ}$$

OP = OQ (given)

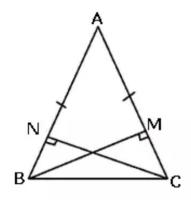
AO = AO

Therefore, △POA ≅ △QOA (SSA criteria)

Hence, $\angle PAO = \angle QAO$

Thus, OA bisects ∠BAC

Answer 27.



In ΔBNC and ΔCMB

$$\angle BNC = \angle CMB = 90^{\circ}$$

$$\angle NBC = \angle MCB$$
 (AB = AC)

BC = BC

Therefore, \triangle BNC \cong \triangle CMB (AAS criteria)

Hence, BM = CN

Answer 28.

In \triangle ABC

AB = AC \angle ABC = \angle ACB (equal sides have equal angles opposite to them)...(i) \angle GBC = \angle HCB = 90°(ii)

Subtracting (i) from (ii) \angle GBA = \angle HCA(iii)

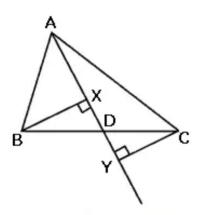
In \triangle GBA and \triangle HCA \angle GBA = \angle HCA (from iii) \angle BAG = \angle CAH (vertically opposite angles)

BC = BC

Therefore, \triangle GBA \cong \triangle HCA (ASA criteria)

Hence, BG = CH and AG = AH

Answer 29.



In ΔBXD and ΔCYD

$$\angle BXD = \angle CYD$$
 (90°)

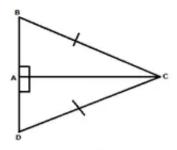
$$\angle$$
 XDB = \angle YDC (vertically opposite angles)

$$BD = DC$$
 (AD is median on BC)

Therefore, ∆BXD ≅ ∆CYD (AAS criteria)

Hence, BX = CY

Answer 30.



In ΔABC and ΔADC

$$\angle BAC = \angle DAC$$
 (90°)

$$BC = DC$$

Therefore, △ ABC ≅ △ ADC (SSA criteria)

Hence, $\angle BCA = \angle DCA$

Thus, AC bisects ∠ BCD

Answer 31.

$$\angle PQT = \angle RQU(i)$$

$$\angle TQS = \angle UQS(ii)$$

Adding (i) and (ii)

$$\angle PQS = \angle RQS$$

In $\triangle PQS$ and $\triangle RQS$

$$\angle PQS = \angle RQS$$

$$PQ = RQ$$
 (given)

Therefore, $\triangle PQS \cong \triangle RQS$ (SAS criteria)

Hence, $\angle QPS = \angle QRS$

Now in △PQT and △RQU

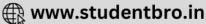
$$\angle QPS = \angle QRS$$

$$PQ = RQ$$
 (given)

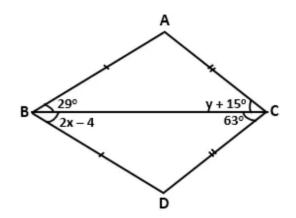
$$\angle PQT = \angle RQU$$
 (given)

Therefore, $\triangle PQT \cong \triangle RQU$ (ASA criteria)

Hence, QT = QU.



Answer 32.



In ΔABC and ΔDBC

$$AB = DB$$
[given]

$$AC = DC$$
[given]

: By Side-Side-Side criterion of congruence,

ΔABC≅ ΔDBC

$$\therefore$$
 \angle ACB = \angle DCB \dots [c.p.c.t.]

$$\Rightarrow$$
 y = 63° - 15°

$$\Rightarrow$$
 v = 48°

Now,
$$\angle ABC = \angle DBC \dots [c.p.c.t.]$$

$$\Rightarrow$$
 29° = 2x - 4°

$$\Rightarrow$$
 2x = 29° + 4°

$$\Rightarrow$$
 2x = 33°

$$\Rightarrow x = \frac{33^{\circ}}{2}$$

Hence, $x = 16.5^{\circ}$ and $y = 48^{\circ}$

